staad-pro-2007-examples.pdf

................

................

全文共(360)页,大小:2.08 MB

STAAD.Pro 2007

1. Graphical model generation utilities as well as text editor based commands for

2. Analysis engines for performing linear elastic and pdelta analysis, finite element

3. Design engines for code checking and optimization of steel, aluminum and timber

4. Result viewing, result verification and report generation tools for examining

5. Peripheral tools for activities like import and export of data from and to other

6. A library of exposed functions called OpenSTAAD which allows users to access

1) STAAD is a large and comprehensive structural engineering

2) The input file represents the user's thought about what he/she

1) Example problem No. 1 - Plane frame with steel design. After

2) Example problem No. 2 - A floor structure (bound by global

3) Example problem No. 3 - A portal frame type steel structure

4) Example problem No. 4 - This example is a typical case of a

5) Example problem No. 5 - This example demonstrates the

6) Example problem No. 6 - This is an example of prestress

1) The prestressing effect is transmitted from the member on

7) Example problem No. 7 - This example illustrates modelling

8) Example problem No. 8 - In this example, concrete design is

9) Example problem No. 9 - A space frame structure in this

10) Example problem No. 10 - A tank structure is modeled with

11) Example problem No. 11 - Dynamic analysis (Response

12) Example problem No. 12 - This example demonstrates

13) Example problem No. 13 - Calculation of displacements at

14) Example problem No. 14 - A space frame is analyzed for

15) Example problem No. 15 - A space frame is analyzed for

16) Example problem No. 16 - Dynamic Analysis (Time History)

17) Example problem No. 17 - The usage of User Provided Steel

18) Example problem No. 18 - This is an example which

19) Example problem No. 19 - This example demonstrates the

20) Example problem No. 20 - This example generates the

21) Example problem No. 21 - This example illustrates the

22) Example problem No. 22 - A space frame structure is

23) Example problem No. 23 - This example illustrates the usage

24) Example problem No. 24 - This is an example of the analysis

25) Example problem No. 25 - This example demonstrates the

26) Example problem No. 26 - The structure in this example is a

27) Example problem No. 27 - This example illustrates the usage

28) Example problem No. 28 - This example demonstrates the

29) Example problem No. 29 - Analysis and design of a structure

1 0 0 ; 2 9 0 ; 3 0 6 ; 4 3 6

5 6 6 ; 6 9 6 ; 7 0 10.5

8 9 10.5 ; 9 2.25 10.5 ; 10 6.75 10.5

11 4.5 10.5 ; 12 1.5 11.4 ; 13 7.5 11.4

14 3 12.3 ; 15 6 12.3 ; 16 4.5 13.2

1 1 3 ; 2 3 7 ; 3 2 6 ; 4 6 8 ; 5 3 4

6 4 5 ; 7 5 6 ; 8 7 12 ; 9 12 14

10 14 16 ; 11 15 16 ; 12 13 15 ; 13 8 13

14 9 12 ; 15 9 14 ; 16 11 14 ; 17 11 15

18 10 15 ; 19 10 13 ; 20 7 9

21 9 11 ; 22 10 11 ; 23 8 10

1 3 4 TA ST UC356X368X129 ; 2 TA ST UC254X254X73

5 6 7 TA ST UB533X210X82 ; 8 TO 13 TA ST UB457X152X52

14 TO 23 TA ST UA100X100X8

14 TO 23

5 START MZ

1 FIXED ; 2 PINNED

4 5 FY -65. ; 11 FY -155.

8 TO 13 UNI Y -13.5 ; 6 UNI GY -17.5

1 2 UNI GX 9.0 ; 8 TO 10 UNI Y -15.0

1 0.75 2 0.75

1.0. The TRACK parameter tells the program to print out the

1 0 0 0 5 6 0 0 ; 7 1.5 0 3

8 3 0 3 ; 9 4 0 3 ; 10 4.5 0 3 ; 11 5 0 3

12 6 0 3 ; 13 0 0 7.5 ; 14 1.5 0. 7.5

15 3.5 0 7.5

16 5 0 7.5 ; 17 6 0 7.5 ; 18 0 0 8.5

19 6 0 8.5 ; 20 0 0 10.5 ; 21 6 0 10.5

1 1 2 4 ; 5 7 8 9 ; 10 13 14 13 ; 14 18 19

15 20 21 ; 16 18 20 ; 17 13 18 ; 18 1 13

19 7 14 ; 20 2 7 ; 21 9 15

22 3 8 ; 23 11 16 ; 24 4 10 ; 25 19 21

26 17 19 ; 27 12 17 ; 28 5 12

1 TO 28 TABLE ST UB305X165X40

1 5 10 14 15 18 17 28 26 20 TO 24 START MZ

4 9 13 14 15 18 16 27 25 19 21 TO 24 END MZ

1 5 13 17 20 21 FIXED

1 TO 28 ALOAD -14.5

1) All dimensions are in meters.

2) Soil Subgrade Reaction – 41666.67 KN/m3

0 6.0 0.0 0.0 14 8.4 0.0 0.0

1 0.0 0.0 0.0 5 2.4 0.0 0.0

6 1.2 3.0 0.0 ; 7 1.2 6.0 0.0

8 7.2 6.0 0.0 ; 9 7.2 3.0 0

1 1 2 4

5 3 6 ; 6 6 7

7 7 8 ; 8 6 9

9 8 9 ; 10 9 12

11 10 11 14

2 3 12 13 PRIS YD 0.60 ZD 2.40

5 6 9 10 TABLE ST JO254X203

7 8 TA ST UB305X165X40

2 TO 4 11 TO 13 FIXED BUT MZ KFY 60

1 5 10 14 FIXED BUT MZ KFY 30

6 7 FX 20.0

7 8 UNI GY -45.0

1 0 0 0 3 12. 0. 0.

4 0 4.5 0 6 12. 4.5 0.

7 6. 9. 0. ; 8 12. 9. 0.

1 1 4 2 ; 3 5 7 ; 4 3 6 ; 5 6 8 ; 6 4 5 7

8 7 8 ; 9 1 5 ; 10 2 4 ; 11 3 5 ; 12 2 6

13 6 7 ; 14 5 8

1 TO 5 TABLE ST UB305X165X40

6 7 8 TA ST UB457X152X52

9 TO 14 TA LD UA150X150X10

1 2 3 PINNED

6 8 UNI GY -4.5

7 UNI GY -6.75

4 FX 135 ; 7 FX 65

6 FX -135 ; 8 FX -65

1 0.75 2 0.75

1 0.75 3 0.75

0.75. For load combinations, the program simply gathers the

0.5 ALL sets the effective length factor for column buckling about

1 0.0 0.0 0.0 ; 2 0.0 3.0 0.0

3 6.0 3.0 0.0 ; 4 6.0 0.0 0.0

5 6.0 3.0 6.0 ; 6 6.0 0.0. 6.0

1 1 2 3

4 3 5 ; 5 5 6

1 TO 5 PRIS AX 6450 IZ 1.249E+08 IY 1.249E+08 IX 4.162E+06

1 4 6 FIXED

4 FY –15

1 0. 0. ; 2 12. 0. ; 3 0. 6. ; 4 12. 6.

5 0. 10.5 ; 6 12. 10.5 ; 7 0. 15. ; 8 12. 15.

1 1 3 ; 2 3 5 ; 3 5 7 ; 4 2 4 ; 5 4 6

6 6 8 ; 7 3 4 ; 8 5 6 ; 9 7 8

1 2 FIXED

1 TO 9 PRI AX 0.2044 IZ 8.631E-03

7 8 FORCE 1350. ES 75. EM -300. EE 75.

7 8 FORCE 1350. ES 75. EM -300. EE 75.

1 0. 0. ; 2 6. 0. ; 3 0. 4.5

4 6. 4.5 ; 5 0. 9. ; 6 6. 9.

1 2 PINNED

1 1 3 2 ; 3 3 5 4

5 3 4 ; 6 5 6 ; 7 1 4

1 TO 4 TABLE ST UC356X368X129

5 6 TA ST UB305X165X40

7 TA LD UA200X150X12

5 6 START 178. 0.0 0.0

5 6 END -178. 0.0 0.0

7 END -178.0 -152.0 0.0

6 and 7.

3 FX 225.0 ; 5 FX 112.5

1 0 0 0 ; 2 5.4 0 0 ; 3 11.4 0. 0

4 0 0 7.2 ; 5 5.4 0 7.2 ; 6 11.4 0 7.2

7 0 3.6 0 ; 8 5.4 3.6 0 ; 9 11.4 3.6 0

10 0 3.6 7.2 ; 11 5.4 3.6 7.2 ; 12 11.4 3.6 7.2

13 5.4 7.2 0 ; 14 11.4 7.2 0 ; 15 5.4 7.2 7.2

16 11.4 7.2 7.2

1 1 7 ; 2 4 10 ; 3 2 8 ; 4 8 13

5 5 11 ; 6 11 15 ; 7 3 9 ; 8 9 14

9 6 12 ; 10 12 16 ; 11 7 8 12

13 10 11 14 ; 15 13 14 ; 16 15 16

17 7 10 ; 18 8 11 ; 19 9 12

20 13 15 ; 21 14 16

1 2 PRISMATIC YD 300.0 IZ 2.119E08 IY 2.119E08 -

3 TO 10 PR YD 300.0 ZD 300.0 IZ 3.596E08 IY 3.596E08 –

11 TO 21 PR YD 535.0 ZD 380 IZ 2.409E09 IY 1.229E09 –

1 TO 6 FIXED

11 TO 16 UNI Y -42.0

11 TO 16 UNI Y -76.5

15 16 FZ 40.0

11 FZ 90.0

12 FZ 70.0

10 FZ 40.0

16 for flexure, shear and torsion.

5 for axial load and biaxial bending.

1 0 0 0 ; 2 0 0 6

7 0 4.5 0 11 0 4.5 6

12 1.5 4.5 0 14 4.5 4.5 0

15 1.5 4.5 6 17 4.5 4.5 6

18 6 4.5 0 22 6 4.5 6

23 7.5 4.5 0 25 10.5 4.5 0

26 7.5 4.5 6 28 10.5 4.5 6

29 12 4.5 0 33 12 4.5 6

34 6 1.125 0 36 6 3.375 0

37 6 1.125 6 39 6 3.375 6

1 1 7 ; 2 2 11

3 3 34 ; 4 34 35 ; 5 35 36 ; 6 36 18

7 4 37 ; 8 37 38 ; 9 38 39 ; 10 39 22

11 5 29 ; 12 6 33

13 7 8 16

17 18 19 20

21 29 30 24

25 7 12 ; 26 12 13 ; 27 13 14 ; 28 14 18

29 18 23 ; 30 23 24 ; 31 24 25 ; 32 25 29

33 11 15 ; 34 15 16 ; 35 16 17 ; 36 17 22

37 22 26 ; 38 26 27 ; 39 27 28 ; 40 28 33

4 elements along the edges AB & CD and 4 elements along the

1 TO 40 PRIS YD 300 ZD 300

41 TO 88 TH 150

1 TO 6 FIXED

41 TO 72 PRESSURE -10.0

11 33 FZ -90.

22 FZ -450.

1 0.9 2 1.3

1 0. 0. 0. 5 0. 6. 0.

81 1.5. 0. 1.5. 83 1.5. 0. 4.5.

1 1 2 7 6 TO 4 1 1

61 76 77 2 1 TO 64 1 1

65 1 6 81 76

66 76 81 82 71

67 71 82 83 66

68 66 83 56 61

69 6 11 84 81

70 81 84 85 82

71 82 85 86 83

72 83 86 51 56

73 11 16 87 84

74 84 87 88 85

75 85 88 89 86

76 86 89 46 51

77 16 21 26 87

78 87 26 31 88

79 88 31 36 89

80 89 36 41 46

1 TO 80 TH 200.0

1 TO 76 BY 5 81 TO 89 PINNED

76 BY 5” means 1, 6, 11, etc. up to 76.

4 TO 64 BY 4 PR 50.0

3 TO 63 BY 4 PR 100.0

2 TO 62 BY 4 PR 150.0

1 TO 61 BY 4 PR 200.0

1 0.0 0.0 0.0 ; 2 6.0 0.0 0.0

3 0.0 3.0 0.0 ; 4 6.0 3.0 0.0

5 0.0 6.0 0.0 ; 6 6.0 6.0 0.0

1 1 3 ; 2 2 4 ; 3 3 5 ; 4 4 6

5 3 4 ; 6 5 6

1 TO 4 TA ST UC254X254X73

5 TA ST UB305X165X54

6 TA ST UB203X133X30

1 2 FIXED

5 CON GY -25.0 1.8

5 CON GY -37.5 3.0

5 CON GY -25.0 4.2

5 6 UNI Y -22.5

5 CON GX 25.0 1.8

5 CON GY 25.0 1.8

5 CON GX 37.5 3.0

5 CON GY 37.5 3.0

5 CON GX 25.0 4.2

5 CON GY 25.0 4.2

3.0m and 4.2m from the start of member 5.

0.03 1.00 ; 0.05 1.35

0.1 1.95 ; 0.2 2.80

0.5 2.80 ; 1.0 1.60

1 0.75 2 0.75

1 0.75 2 -0.75

1 0 0 0 6 7.5 0 0

6. With the repeat (R) command, the coordinates of the next 30

1 1 7 6

7 1 2 11

56 31 32 60

1 TO 60 TA ST UB305X165X40

1 TO 6 31 TO 36 PINNED

1 0 0 ; 2 0. 4.5 ; 3 6 4.5 ; 4 6 0.

1 1 2 ; 2 2 3 ; 3 3 4

1 3 TABLE ST UC203X203X46

2 TABLE ST UB305X165X40

1 FIXED ; 4 PINNED

2 FX 25.0

2 UNI GY -45.0

43. FINISH

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

54 5553 56

57 58 59 60

61 62 63 64

1 0 0 0 4 10.5 0 0

101 17 18 103

104 21 22 106

107 25 26 109

110 29 30 112

201 17 21 204

205 21 25 208

209 25 29 212

301 1 17 348

101 TO 136 201 TO 236 PRIS YD 0.40 ZD 0.30

301 TO 348 TA ST UB457X152X52

1 TO 16 FIXED

17 TO 48 WEIGHT 7.0

49 TO 64 WEIGHT 3.5

17 TO 48 FY -7.0

49 TO 64 FY -3.5

17 TO 48 FY –7.0

49 TO 64 FY –3.5

1 0 0 0

1 1 9 16

17 9 10 18

19 12 13

20 14 15 21

22 17 18 23

24 20 21

25 22 23 26

27 9 12 ; 28 12 14 ; 29 10 13 ; 30 13 15 ; 31 11 16

32 17 20 ; 33 20 22 ; 34 18 21 ; 35 21 23 ; 36 19 24

1 TO 16 TA ST UB457X191X74

17 TO 26 TA ST UB457X152X52

27 TO 36 TA ST UB457X152X52

1 TO 8 FIXED BUT MX MZ

1.5 KN/sq. m) are specified for two different height zones (0 to

3.5m and 3.5 to 7.0m). The EXPOSURE specification is used to

8.0m. The second EXPOSURE specification specifies the exposure

5.0 KN/sq.m. in the negative global Y direction.

1 0.0 0.0 0.0

2 0.0 120.0 0.0

3 0.0 240.0 0.0

4 0.0 360.0 0.0

1 2 3 PRIS AX 100.0 IZ 833.33

1 4 PINNED

0.0 –20.0 0.5 100.0 1.0 200.0 1.5 500.0 2.0 800.0 2.5 500.0 3.0

0.0 0.1 0.5 –0.25 1.0 –0.5 1.5 –0.9 2.0 –1.3 2.5 –1.0 3.0 –0.7

1 2 3 UNI GX 500.0

500 Newton/m acts along the global X direction on all 3 members.

2 3 FX 4000.0

2 3 FX 1 1

1 0. 0. ; 2 9 0 ; 3 0 6 0 6 9 6 0

7 0 10.5 ; 8 9 10.5 ; 9 2.25 10.5 ; 10 6.75 10.5

11 4.5 10.5 ; 12 1.5 11.4 ; 13 7.5 11.4

14 3.0 12.3 ; 15 6.0 12.3; 16 4.5 13.2

1 1 3 ; 2 3 7 ; 3 2 6 ; 4 6 8 ; 5 3 4

6 4 5 ; 7 5 6 ; 8 7 12 ; 9 12 14

10 14 16 ; 11 15 16 ; 12 13 15 ; 13 8 13

14 9 12 ; 15 9 14 ; 16 11 14 ; 17 11 15

18 10 15 ; 19 10 13 ; 20 7 9

21 9 11 ; 22 10 11 ; 23 8 10

32.2 25.5 0.6 10.2 0.85 3400 150 6.2 15.7 15.4

47.5 30.4 0.72 12.4 1.07 7160 335 14.3 21.9 23.8

64.6 35.6 0.73 17.2 1.15 14150 970 22.8 26.0 35.5

3.0 3.0 0.5 0.58 1.0 1.0

4.0 4.0 0.5 0.78 1.33 1.33

5.0 5.0 0.5 0.98 1.67 1.67

1 3 4 UPT 1 BEAM350

2 UPT 1 BEAM300 ; 5 6 7 UPT 1 BEAM250

8 TO 13 UPT 1 BEAM250

14 TO 19 UPT 2 L30305

20 TO 23 UPT 2 L40405

14 TO 23

5 START MZ

1 FIXED ; 2 PINNED

4 5 FY -65. ; 11 FY -155.

8 TO 13 UNI Y –13.5 ; 6 UNI GY –17.5

4, 5 and 11, and distributed loads on some members.

1 0 0 0 4 9 0 0

1 1 5 6 2 TO 3

1 TO 9 THICK 0.25

1 TO 4 5 9 13 FIXED

1 TO 9 PRESSURE -2000.0

84.21110.0S

22.107260.0S

97.45530.0S

4372.0*21tan2

1 0 5 0; 2 10 5 10; 3 20 5 20; 4 30 5 30; 5 5 0 5; 6 25 0 25;

1 1 2; 2 2 3; 3 3 4; 4 5 2; 5 6 3;

4 5 PRIS YD 800

1 TO 3 PRIS YD 750 ZD 500

5 INCLINED REF 10 5 10 FIXED BUT MX MY MZ KFX 30000

6 INCLINED REFJT 3 FIXED BUT MX MY MZ KFX 30000

1 PINNED

4 INCLINED 1 0 1 FIXED BUT FX MX MY MZ

3 different methods are shown in the above 3 instances for

1 TO 3 UNI GY -6

1 1.0 2 1.0

3 load cases followed by the instruction for the type of analysis are

1 3.5 0 0 8 3.5 315 0

1 1 2 10 9 TO 7 1 1

8 8 1 9 16

16. The REPEAT ALL command states that the pattern of ALL the

1 0 0 ; 2 0 3.5 ; 3 0 7.0 ; 4 5.25 7.0 ; 5 5.25 3.5 ; 6 5.25 0

6 1 5 ; 7 2 6 ; 8 2 4 ; 9 3 5 ; 10 2 5

1 TO 10 TA ST UC152X152X30

1 6 PINNED

4 FX -45

5 FX -70

1 1.0 2 1.0

4 FX -45

5 FX -70

1 0 0 0 ; 2 5 0 0 ; 3 5 0 5 ; 4 0 0 5

5 0 7 0 ; 6 2.5 7 0 ; 7 5 7 0 ; 8 5 7 2.5

9 5 7 5 ; 10 2.5 7 5 ; 11 0 7 5

12 0 7 2.5 ; 13 2.5 7 2.5

1 1 5 ; 2 2 7 ; 3 3 9 ; 4 4 11 ; 5 5 6 ; 6 6 7

7 7 8 ; 8 8 9 ; 9 9 10 ; 10 10 11 ; 11 11 12 ; 12 12 5

13 6 13 ; 14 13 10 ; 15 8 13 ; 16 13 12

1 TO 4 PRIS YD 600 ZD 600

5 TO 16 PRIS YD 450 ZD 450

1 TO 4 PINNED

5 6 7 8 9 10 11 12 UNI GY -10.0

8 12 FX 15.0

8 12 FY 15.0

8 12 FZ 15.0

8 12 FX 1 1

1 0.0 0.0 13.33

2 0.0 0.0 12.0

3 0.0 0.0 9.39

4 0.0 0.0 6.78

5 0.0 0.0 4.17

6 0.0 0.0 2.17

7 0.0 0.0 0.0

1 1 8 9 2 TO 6

1 TO 102 TH 14.0

1 TO 126 ELASTIC MAT DIRECTION Y SUB 1570.

1 TO 102 PR GY –74.2

1 2 FY -965.

8 9 FY -485.

5 FY -1373.

6 FY -2746.

22 23 FY -1824.

29 30 FY -912.

26 FY -2414.

27 FY -4828.

43 44 50 51 71 72 78 79 FY -1368.

47 54 82 FY -1175.

48 55 76 83 FY -2350.

92 93 FY -912.

99 100 FY -1824.

103 FY -2166.

104 FY -4333.

113 114 FY -485.

120 121 FY -965.

124 FY -1216.

125 FY -2431.

1 1. 2 1.

1 is first defined by all of its 8 nodes. Then, increments of 1 to the

8, 9, 11 and 12 are generated.

1 5 21 25 29 41 45 49 PINNED

9 ENFORCED

28 FY -1000.0

2 TO 4 22 TO 24 42 TO 44 FX 100.0

9 FX 0.0011

3 6 9 12 FACE 4 PRE GY -500.0

1 1.0 2 1.0 3 1.0 4 1.0

28 FY -1000.0

2 TO 4 22 TO 24 42 TO 44 FX 100.0

9 FX .0011

3 6 9 12 FACE 4 PRE GY -500.0

1 1.0 2 1.0

1 0 0 ; 2 0 3.5 ; 3 0 7.0 ; 4 5.25 7.0 ; 5 5.25 3.5 ; 6 5.25 0

1 1 2 5 ; 6 1 5 ; 7 2 6 ; 8 2 4 ; 9 3 5 ; 10 2 5

1 TO 10 TA ST UC152X152X30

1 6 PINNED

4 FX -45

5 FX -70

1 1.0 2 1.0

4 FX -45

5 FX -70

1 0 0 0 4 0 48 0

1 1 2 3 ; 4 5 6 6 ; 7 9 10 9 ; 10 13 14 12

13 17 18 15 ; 22 29 30 24 ; 25 33 34 27

34 45 46 36 ; 37 49 50 39 ; 40 53 54 42

43 57 58 45 ; 46 61 62 48 ; 49 2 6 51

52 6 10 54 ; 55 10 14 57 ; 58 18 22 60

61 22 26 63 ; 64 26 30 66 ; 67 34 38 69

70 38 42 72 ; 73 42 46 75 ; 76 50 54 78

79 54 58 81 ; 82 58 62 84 ; 85 18 2 87

88 22 6 90 ; 91 26 10 93 ; 94 30 14 96

97 34 18 99 ; 100 38 22 102 ; 103 42 26 105

106 46 30 108 ; 109 50 34 111 ; 112 54 38 114

115 58 42 117 ; 118 62 46 120

152 50 34 38 54 TO 154

155 54 38 42 58 TO 157

158 58 42 46 62 TO 160

161 34 18 22 38 TO 163

164 38 22 26 42 TO 166

167 42 26 30 46 TO 169

170 18 2 6 22 TO 172

173 22 6 10 26 TO 175

176 26 10 14 30 TO 178

1 TO 15 22 TO 27 34 TO 48 TA ST W14X90

49 TO 120 TABLE ST W27X84

152 TO 178 THICK 0.75

1 TO 17 BY 4 29 33 45 TO 61 BY 4 FIXED

2 3 4 14 15 16 50 51 52 62 63 64 FZ 10.0

6 7 8 10 11 12 18 19 20 30 31 32 FZ 20.0

34 35 36 46 47 48 54 55 56 58 59 60 FZ 20.0

22 23 24 26 27 28 38 39 40 42 43 44 FZ 40.0

2 3 4 50 51 52 FZ 5.0

14 15 16 62 63 64 FZ 15.0

6 7 8 18 19 20 FZ 10.0

10 11 12 30 31 32 FZ 30.0

34 35 36 54 55 56 FZ 10.0

46 47 48 58 59 60 FZ 30.0

22 23 24 38 39 40 FZ 20.0

26 27 28 42 43 44 FZ 60.0

152 TO 178 PRESS GY -1.0

1 0.0 0.0 40.0

2 0.0 0.0 36.0

3 0.0 0.0 28.167

4 0.0 0.0 20.333

5 0.0 0.0 12.5

6 0.0 0.0 6.5

7 0.0 0.0 0.0

1 1 8 9 2 TO 6

1 TO 102 TH 8.0

1 TO 126 KFY

1 TO 126 ELASTIC MAT DIRECTION Y SUBGRADE 12.0

1 TO 102 PR GY -1.50

1 2 FY -217.

8 9 FY -109.

5 FY -308.7

6 FY -617.4

22 23 FY -410.

29 30 FY -205.

26 FY -542.7

27 FY -1085.4

43 44 50 51 71 72 78 79 FY -307.5

47 54 82 FY -264.2

48 55 76 83 FY -528.3

92 93 FY -205.0

99 100 FY -410.0

103 FY -487.0

104 FY -974.0

113 114 FY -109.0

120 121 FY -217.0

124 FY -273.3

125 FY -546.6

1 TO 102 PR GY -1.50

1 2 FY -100.

8 9 FY -50.

5 FY -150.7

6 FY -310.4

22 23 FY -205.

29 30 FY -102.

26 FY -271.7

27 FY -542.4

43 44 50 51 71 72 78 79 FY -153.5

47 54 82 FY -132.2

48 55 76 83 FY -264.3

92 93 FY 102.0

99 100 FY 205.0

103 FY 243.0

104 FY 487.0

113 114 FY 54.0

120 121 FY 108.0

124 FY 136.3

125 FY 273.6

67, and support reactions at a list of joints for load case 3, are

1 0 0 0; 2 4 0 0; 3 6.5 0 0; 4 9 0 0; 5 11.5 0 0; 6 15.5 0 0;

11 -1 10 0 25 16.5 10 0

12 through 24 are generated using linear interpolation.

11 through 25), 63 new joints are generated. To achieve this, the X

1 1 13 ; 2 2 15 ; 3 3 17 ; 4 4 19 ; 5 5 21 ; 6 6 23

26 26 34 ; 27 27 36 ; 28 28 38 ; 29 29 40 ; 30 30 42 ; 31 31 44

47 47 55 ; 48 48 57 ; 49 49 59 ; 50 50 61 ; 51 51 63 ; 52 52 65

68 68 76 ; 69 69 78 ; 70 70 80 ; 71 71 82 ; 72 72 84 ; 73 73 86

101 11 12 114

202 32 33 215

303 53 54 316

404 74 75 417

1 unit at a time (which is the default increment), the incidences of

202 to 215, 303 to 316, and, 404 to 417.

168 for the 3rd span.

1 TO 6 26 TO 31 47 TO 52 68 TO 73 FIXED

1. The input you specify is weights, not masses. Internally, STAAD

2. If the structure is declared as a PLANE frame, there are 2 possible

3. As much as possible, provide absolute values for the weights.

60%. The reason for this can be understood by an examination of

1 0 0 0 ; 2 0 3.5 0 ; 3 0 5.3 0 ; 4 0 7 0

17 1.8 7 0 ; 18 4.6 7 0 ; 19 7.6 7 0

17, 18 & 19) and generation (20, 21 & 22) is carried out. The

7 9 10 9

10 13 14 12

13 4 17; 14 17 18; 15 18 19; 16 19 8

17 12 20; 18 20 21; 19 21 22; 20 22 16

21 2 10; 22 4 12; 23 6 14

24 8 16; 25 3 17; 26 7 19; 27 11 20; 28 15 22; 29 18 21

1 5 9 13 PINNED

0.0000 0.006300

0.0200 0.003640

0.0400 0.000990

0.0600 0.004280

0.0800 0.007580

0.1000 0.010870

0.00364 multiplied by 32.2 ft/sec^2). Consequently, the burden of

0.0, as there is no other dynamic load on the structure from the

1 1.0 2 1.0 3 1.0

1 1.0 2 1.0 3 -1.0

8EI=8x(210x103N/sq.mm)x(100x253/12)

59 in13.5 in 13.5 in

30° 30 °