staad-pro-advanced-training.pdf

................

................

全文共(79)页,大小:1.61 MB

D

1. Introduction

2. Contents

1. Introduction ................................................................................................................................... 0

2. Contents ........................................................................................................................................ 0

3. Zero Stiffness............................................................................................................................... 2

4. Understanding Instabilities ......................................................................................................... 4

5. Seismic Analysis Using UBC And IBC Codes .................................................................... 13

6. Calculating Mode Shapes, Frequencies And Participation factors .................................. 20

7. Response Spectrum Analysis ................................................................................................. 27

8. Time History analysis of a structure for seismic accelerations .................................... 39

9. Time History Analysis for a Structure subjected to a Harmonic Loading .................. 42

10. Time History Analysis for a Structure subjected to a random excitation ................... 47

11. Hands on Exercise 1 – Dynamic Analysis .............................................................................. 48

1) Structure Wizard ........................................................................................................................... 48

2) Add Properties and Supports ....................................................................................................... 49

3) Create Time History Graphs ......................................................................................................... 50

4) Create a Time History Loadcase .................................................................................................. 50

5) Viewing Mode Shapes .................................................................................................................. 51

12. P-Delta Analysis ......................................................................................................................... 52

13. P-Delta analysis including stress stiffening effect of the KG matrix .................................... 54

14. P-Delta analysis including Small Delta .................................................................................... 56

15. Hands on Exercise 2 - P-Delta analysis .................................................................................. 57

16. Buckling Load analysis ............................................................................................................. 60

17. Modal Analysis including stress stiffening effect of KG Matrix ............................................ 64

18. Non Linear Cable/Truss Analysis ............................................................................................. 66

19. Hands on Exercise 3 - Non-Linear Truss analysis .................................................................. 69

20. Hands on Exercise 4 - Non-Linear Cable analysis - I ............................................................. 70

21. Hands on Exercise 5 - Non-Linear Cable analysis –II ............................................................ 71

22. Other STAAD features ............................................................................................................... 74

23. Other STAAD.Pro Optional modules. ....................................................................................... 75

3. Zero Stiffness

4. Understanding Instabilities

2 3 START MX MY MZ

0), and node 83 also has coordinates of (7, 10, 0), node 5 and 83 are considered

4 and 1. Thus, the beam has no common nodes with the element. No transfer of loads

2, as shown below.

1 0 0 0; 2 0 10 0; 3 10 10 0; 4 10 0 0; 5 13 10 0; 6 -4 10 0;

1 1 2; 2 2 3; 3 3 4;

1 0 0 0; 2 0 10 0; 3 10 10 0; 4 10 0 0; 5 13 10 0; 6 -4 10 0;

1 1 2; 2 2 3; 3 3 4;

5 START MY MZ

5 START MP 0.99

5. Seismic Analysis Using UBC And IBC Codes

1 0 0 0 ; 2 0 10 0 ; 3 13 10 0 ; 4 27 10 0 ; 5 40 10 0 ; 6 40 0 0

7 0 20.5 0 ; 8 20 20.5 0 ; 9 40 20.5 0

1 1 2 5 ; 6 1 3 ; 7 4 6 ; 8 2 7 ; 9 7 8 10 ; 11 9 5 ; 12 2 8 ; 13 5 8

21 10 11 25 ; 26 10 12 ; 27 13 15 ; 28 11 16 ; 29 16 17 30 ; 31 18 14

32 11 17 ; 33 14 17

41 2 11 44

45 7 16 47

1 5 8 11 21 25 28 31 TA ST W14X90

2 3 4 22 23 24 TA ST W18X35

9 10 29 30 TA ST W21X50

41 TO 44 TA D C12X30

45 TO 47 TA D C15X40

6 7 26 27 TA ST HSST20X12X0.5

51 TO 58 TA LD L50308

12 13 32 33 TA ST TUB2001205

1 6 10 15 FIXED

51 TO 58

1 1.0 3 1.0

2 1.0 3 1.0

2 methods - Method A and Method B. The value based on Method A is called Ta.

6. Calculating Mode Shapes, Frequencies And

1. The Rayleigh method using the CALCULATE RAYLEIGH FREQUENCY

2. The elaborate method which involves extracting eigenvalues from a matrix based

1. The DENSITY command

2. The CUT OFF MODE SHAPE command

3. The MODAL CALCULATION REQUESTED command.

4. The MASSES which are to be used in assembling the MASS MATRIX

1 0 0 0; 2 0 0 20; 3 20 0 0; 4 20 0 20; 5 40 0 0; 6 40 0 20; 7 0 15 0;

8 0 15 5; 9 0 15 10; 10 0 15 15; 11 0 15 20; 12 5 15 0; 13 10 15 0;

14 15 15 0; 15 5 15 20; 16 10 15 20; 17 15 15 20; 18 20 15 0;

19 20 15 5; 20 20 15 10; 21 20 15 15; 22 20 15 20; 23 25 15 0;

24 30 15 0; 25 35 15 0; 26 25 15 20; 27 30 15 20; 28 35 15 20;

29 40 15 0; 30 40 15 5; 31 40 15 10; 32 40 15 15; 33 40 15 20;

34 20 3.75 0; 35 20 7.5 0; 36 20 11.25 0; 37 20 3.75 20; 38 20 7.5 20;

39 20 11.25 20; 40 5 15 5; 41 5 15 10; 42 5 15 15; 43 10 15 5;

44 10 15 10; 45 10 15 15; 46 15 15 5; 47 15 15 10; 48 15 15 15;

49 25 15 5; 50 25 15 10; 51 25 15 15; 52 30 15 5; 53 30 15 10;

54 30 15 15; 55 35 15 5; 56 35 15 10; 57 35 15 15; 58 20 11.25 5;

59 20 11.25 10; 60 20 11.25 15; 61 20 7.5 5; 62 20 7.5 10; 63 20 7.5 15;

64 20 3.75 5; 65 20 3.75 10; 66 20 3.75 15; 67 20 0 5; 68 20 0 10;

69 20 0 15;

1 1 7; 2 2 11; 3 3 34; 4 34 35; 5 35 36; 6 36 18; 7 4 37; 8 37 38;

9 38 39; 10 39 22; 11 5 29; 12 6 33; 13 7 8; 14 8 9; 15 9 10; 16 10 11;

17 18 19; 18 19 20; 19 20 21; 20 21 22; 21 29 30; 22 30 31; 23 31 32;

24 32 33; 25 7 12; 26 12 13; 27 13 14; 28 14 18; 29 18 23; 30 23 24;

31 24 25; 32 25 29; 33 11 15; 34 15 16; 35 16 17; 36 17 22; 37 22 26;

38 26 27; 39 27 28; 40 28 33;

41 7 8 40 12; 42 8 9 41 40; 43 9 10 42 41; 44 10 11 15 42;

45 12 40 43 13; 46 40 41 44 43; 47 41 42 45 44; 48 42 15 16 45;

49 13 43 46 14; 50 43 44 47 46; 51 44 45 48 47; 52 45 16 17 48;

53 14 46 19 18; 54 46 47 20 19; 55 47 48 21 20; 56 48 17 22 21;

57 18 19 49 23; 58 19 20 50 49; 59 20 21 51 50; 60 21 22 26 51;

61 23 49 52 24; 62 49 50 53 52; 63 50 51 54 53; 64 51 26 27 54;

65 24 52 55 25; 66 52 53 56 55; 67 53 54 57 56; 68 54 27 28 57;

69 25 55 30 29; 70 55 56 31 30; 71 56 57 32 31; 72 57 28 33 32;

73 18 19 58 36; 74 19 20 59 58; 75 20 21 60 59; 76 21 22 39 60;

77 36 58 61 35; 78 58 59 62 61; 79 59 60 63 62; 80 60 39 38 63;

81 35 61 64 34; 82 61 62 65 64; 83 62 63 66 65; 84 63 38 37 66;

85 34 64 67 3; 86 64 65 68 67; 87 65 66 69 68; 88 66 37 4 69;

1 TO 40 PRIS YD 1 ZD 1

41 TO 88 THICKNESS 0.5

1 TO 6 FIXED

41 TO 88 PR GX 300.0

41 TO 88 PR GY 300.0

41 TO 88 PR GZ 300.0

7. Response Spectrum Analysis

5.32.10.1 of the Technical Reference manual.

1. In a spectrum analysis, the number of modes to be combined is a decision made

2. In a spectrum analysis, the contribution from the various modes is combined

3. In the UBC method, only a single period is used. Normally, the assumption is

4. The UBC static equivalent method involves several parameters such as

32.2 when the length unit is in INCHES.)

1. For each mode, the period is determined.

2. Corresponding to the period, the spectral displacement for that mode is

3. Calculate the spectral displacement for each direction by multiplying "sd" by

1 1.1 5 1.3

1 1.1 5 -1.3

32.2 when the length unit is in INCHES.)

274 TO 277 UNI GX 1.36

272 466 998 UNI GX 4.13

313 314 474 477 UNI GX 6.29

274 TO 277 UNI GY 1.36

272 466 998 UNI GY 4.13

313 314 474 477 UNI GY 6.29

274 TO 277 UNI GZ 1.36

272 466 998 UNI GZ 4.13

313 314 474 477 UNI GZ 6.29

420 424 FX 47.32

389 TO 391 FX 560

420 424 FY 47.32

389 TO 391 FY 560

420 424 FZ 47.32

389 TO 391 FZ 560

0.025 0.14; 0.0303 0.1636; 0.05 0.2455; 0.0625 0.2941; 0.0769 0.3479;

0.0833 0.3713;

0.1 0.3713; 0.125 0.3713; 0.1667 0.3713; 0.1895 0.3713; 0.25 0.2815;

0.2857 0.2463;

0.3333 0.2111; 0.4 0.1759; 0.5 0.1407; 0.6667 0.1056; 1 0.0704; 2

0.0344; 10 0.001372;

0.025 0.14; 0.0303 0.1636; 0.05 0.2455; 0.0625 0.2941; 0.0769 0.3479;

0.0833 0.3713;

0.1 0.3713; 0.125 0.3713; 0.1667 0.3713; 0.1895 0.3713; 0.25 0.2815;

0.2857 0.2463;

0.3333 0.2111; 0.4 0.1759; 0.5 0.1407; 0.6667 0.1056; 1 0.0704; 2

0.0344; 10 0.001372;

0.03 0.8702; 0.05 1.0752; 0.1 1.5876; 0.15 2.1; 0.3 2.1; 0.5 2.1; 0.7 1.5;

0.9 1.1667; 1.1 0.9545; 1.3 0.8077; 1.5 0.7; 1.7 0.6176; 1.9 0.5526;

2.1 0.4762; 2.3 0.397; 2.5 0.336; 2.7 0.2881; 2.9 0.2497; 3.1 0.2185;

3.3 0.1928; 3.5 0.1714; 3.7 0.1534; 3.9 0.1381; 4.1 0.1249; 4.3 0.1136;

4.8 0.0911; 6 0.0583; 7 0.0429; 8 0.0328; 10 0.021; 20 0.0053; 30 0.0023;

0.03 0.8702; 0.05 1.0752; 0.1 1.5876; 0.15 2.1; 0.3 2.1; 0.5 2.1; 0.7 1.5;

0.9 1.1667; 1.1 0.9545; 1.3 0.8077; 1.5 0.7; 1.7 0.6176; 1.9 0.5526;

2.1 0.4762; 2.3 0.397; 2.5 0.336; 2.7 0.2881; 2.9 0.2497; 3.1 0.2185;

3.3 0.1928; 3.5 0.1714; 3.7 0.1534; 3.9 0.1381; 4.1 0.1249; 4.3 0.1136;

4.8 0.0911; 6 0.0583; 7 0.0429; 8 0.0328; 10 0.021; 20 0.0053; 30 0.0023;

0.03 0.8702; 0.05 1.0752; 0.1 1.5876; 0.2 2.1; 0.3 2.1; 0.5 2.1; 0.7 1.5;

0.9 1.1667; 1.1 0.9545; 1.3 0.8077; 1.5 0.7; 1.7 0.6176; 1.9 0.5526;

2.1 0.4762; 2.3 0.397; 2.5 0.336; 2.7 0.2881; 2.9 0.2497; 3.1 0.2185;

3.3 0.1928; 3.5 0.1714; 3.7 0.1534; 3.9 0.1381; 4.1 0.1249; 4.3 0.1136;

4.8 0.0911; 6 0.0583; 7 0.0429; 8 0.0328; 10 0.021; 20 0.0053; 30 0.0023;

1 1.0 2 1.0

8. Time History analysis of a structure for seismic

0.0000 0.006300

0.0200 0.003640

0.0400 0.000990

0.0600 0.004280

0.0800 0.007580

0.1000 0.010870

0.02 seconds, the acceleration is 0.00364 multiplied by 9.806 m/sec^2 (or 0.00364

41 TO 88 PR GX 300.0

41 TO 88 PR GY 300.0

41 TO 88 PR GZ 300.0

9. Time History Analysis for a Structure subjected to a

10 FX 7.5

10 FY 7.5

10 FZ 7.5

7 FX 1 1

14 FZ 2 1

17 FZ 2 2

1 1.2 2 1.4

10. Time History Analysis for a Structure subjected to

0.00001 -0.000001 0.005 -650 0.01 -800 0.015 -800 0.02 -800 0.025 -800

0.03 -700 0.035 -350 0.04 -250 0.045 -500 0.05 -730 0.055 -600

0.06 -350 0.065 -280 0.07 -450 0.075 -600 0.08 -550 0.085 -440

0.09 -415 0.095 -410 0.1 -420

0.0 0.0 0.1 80.0 0.2 0.1 0.35 0.0 0.4 0.0 1.0 0.0

11. Hands on Exercise 1 – Dynamic Analysis

1) Structure Wizard

2) Add Properties and Supports

3) Create Time History Graphs

1 0.0 -20

2 0.25 100

3 0.50 200

4 0.75 500

5 1.00 800

6 1.25 500

7 1.50 70

4) Create a Time History Loadcase

5) Viewing Mode Shapes

90% of the mass is considered in the X direction. Close the output file.

0.5 1 1.5 1.75

1.02-0.501

12. P-Delta Analysis

1. First, the primary deflections are calculated based on the provided external loading.

2. Primary deflections are then combined with the originally applied loading to create

3. A new stiffness analysis is carried out based on the revised load vector to generate

4. Element/Member forces and support reactions are calculated based on the new

1) When the CONVERGE command is not specified: The member end forces are

2) When the CONVERGE command is included: The member end forces are

3) To set convergence displacement tolerance, enter SET DISPLACEMENT f

13. P-Delta analysis including stress stiffening effect of

14. P-Delta analysis including Small Delta

15. Hands on Exercise 2 - P-Delta analysis

2 kN/m^2 and wind load is 1 kN/m^2 up to a height of 20m and 1.2 kN/m^2 thereafter. Use

1 TO 400 PRIS YD 0.4 ZD 0.3

1 TO 4 45 TO 48 89 TO 92 133 TO 136 FIXED

1 1.4 2 1.6

1 1.4 3 1.4

1 1.2 2 1.2 3 1.2

95.14 116.65

99.4 121.32

16. Buckling Load analysis

17. Modal Analysis including stress stiffening effect of KG

2 3 6 7 9 TO 12 FY -3

2 3 6 7 9 TO 12 FX 10 FY 10 FZ 10

18. Non Linear Cable/Truss Analysis

19. Hands on Exercise 3 - Non-Linear Truss analysis

20. Hands on Exercise 4 - Non-Linear Cable analysis - I

21. Hands on Exercise 5 - Non-Linear Cable analysis –II

22. Other STAAD features

23. Other STAAD.Pro Optional modules.